ADVANCED CALCULUS

I Year II Semester: Common to All Branches

Course Code	Category	Hours / Week			Credits	Maximum Marks		
A5BS04	BSC	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 44	Tutorial Classes: 08	Pra	actica	I Class	es: Nil	Total Classes: 52		

Course Objectives

To learn

- 1. Evaluation of improper integrals using Beta and Gamma functions.
- 5. The partial derivatives of several variable functions.
- 3. Concept and application of Laplace transforms.
- 4. Fourier series for periodic functions.
- 5. Numerical techniques.

UNIT-I BETA GAMMA FUNCTIONS AND MULTIPLE INTEGRALS

Classes: 11

Beta- Gamma Functions and their Properties-Relation between them- Evaluation of improper integrals using Gamma and Beta functions.

Double and triple integrals (Cartesian and polar), Change of order of integration in double integrals.

UNIT-II CALCULUS OF SEVERAL VARIABLES

Classes: 11

Limit, Continuity - Partial derivative- Partial derivatives of higher order -Total derivative - Chain rule, Jacobians -functional dependence & independence. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints)

UNIT-III LAPLACE TRANSFORMS

Classes: 12

Laplace transforms of elementary functions- First shifting theorem - Change of scale property – Multiplication by t^n - Division by t – Laplace transforms of derivatives and integrals – Unit step function – Second shifting theorem – Periodic function – Evaluation of integrals by Laplace transforms – Inverse Laplace transforms- Method of partial fractions – Other methods of finding inverse transforms – Convolution theorem – Applications of Laplace transforms to ordinary differential equations.

UNIT-IV FOURIER SERIES

Classes:10

Periodic function-Determination of Fourier Coefficients-Fourier Series-Even and Odd functions-Fourier series in arbitrary interval-Even Odd periodic continuation-Half range Fourier sine and cosine expansions.

UNIT-V NUMERICAL TECHNIQUES

Classes: 08

ROOT FINDING TECHNIQUES:

Bisection method-Regula falsi method, Iteration method and Newton Raphson method. NUMERICAL INTEGRATION:

Trapezoidal rule - Simpson's one-third rule - Simpson's three-eighth rule.

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Taylor's series method -

Euler's - modified Euler's Method - Runge-Kutta method.

Text Books:

- 1. Ervin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S.Grewal, Higher Engineering Mathematics, Khanna publishers, 36th Edition, 2010.

Reference Books:

- 1. G.B.Thomas, calculus and analytical geometry,9th Edition, Pearson Reprint 2006.
- 2. N.P Bali and Manish Goyal ,A Text of Engineering Mathematics,Laxmi publications,2008.
- 3. E.L.Ince, Ordinary differential Equations, Dover publications, 1958.

E-Text Books:

1.https://www.e-booksdirectory.com/details.php?ebook=10166

MOOCS Course:

- 1. https://swayam.gov.in/
- 2. https://onlinecourses.nptel.ac.in/

Course Outcomes

At the end of the course, student will be able to:

- 1. Evaluate the improper integrals using beta and gamma functions.
- 2. Find the Maxima and Minima of several variable functions.
- 3. Solve the differential equations using Laplace transform techniques.
- 4. Find the Fourier series of the periodic functions.
- 5. Apply various numerical techniques to solve differential equations.